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of unoccupied low energy d-type orbitals on lithium,18 which 
allow the additional a electron to occupy a bonding orbital. 
This should be contrasted with planar triplet ethylene (3Bi11), 
where an electron occupies the TT* antibonding orbital. 

We hope that these findings and the synthetic availability 
of closely analogous molecules such as 1,1 -dilithio-2-methyl-
propene19 will encourage experimental work on the determi
nation of the structures and rotation barrier of ethylenes 
geminally substituted with electropositive groups.20 Extension 
of our research to other polylithioethylenes, as well as to po-
lylithiated methanes,13 acetylenes, allenes, imines, and azo 
compounds has also revealed startling structural features, and 
these results will be presented in future publications. 
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Evidence on Internal Return from Isotope Effects in 
the Hydrogen-Deuterium Exchange of Benzyl 
Sulfoxides. A Caveat re Interpretation of Isotopic 
Exchange Rates 

Sir: 

In 1965 the report by Rauk, Buncel, Moir, and Wolfe1 de
scribing a highly stereoselective hydrogen-deuterium exchange 
of the diastereotopic methylene protons of benzyl methyl 
sulfoxide, 1, has stimulated extensive studies on the mechanism 
of this interesting reaction. Effects of orientation of the de
veloping anion with respect to the asymmetric sulfur atom on 
selectivity have received wide attention2 as have effects of 
solvent2,3 and ion-pairing.4 In addition, ab initio MO calcu
lations of anion stability as a function of stereochemistry were 
carried out.5 A comparison of the results of H-D exchange 
with those calculated (for the gas phase) led one of us2f to 
conclude that agreement was lacking "presumably because of 
strong solvation effects". At the same time it was pointed out 
that internal return,6 which could invalidate the use of kinetic 
data to assess carbanion stability, remained to be examined. 
Recent additional studies on several thiolane S-oxide deriva-
tives2a have produced results which the authors termed "dif
ficult to organize in a unique coherent pattern". Such ambig
uous accumulating data emphasize the need for knowing if 
internal return occurs during the exchange process. In this 
paper we provide evidence on internal return by measurement 
of the primary isotope effects k-n/ki and ko/kj in the isotopic 
exchange of (a) each diastereotopic proton of benzyl methyl 
sulfoxide and (b) two of the benzylic protons of the bridged 
biaryl sulfoxide, 2.2f The results show that internal return is 
negligible in the former case but dominant in the latter. 

O 
t 

A 
H2C CH2 

H3C CH, 
2 

The pioneering research of Cram and co-workers first es
tablished the presence of internal return in an isotopic exchange 
reaction involving carbanion intermediates.9 The pathway for 
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Table I. Isotopic Exchange Rates of Methylene Protons of Benzylmethyl Sulfoxide0 
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Substrate Base/solvent 

k ± 2 (standard deviations), M ' min 

D 
Internal 

Isotope effect return (apj) 

NaOD (0.04 M) 
in D,0 

NaOH (0.04 M) 
inH,0 

21.6 + 0.3 7.22 ±0.06 

5.41 + 0.08 3.90 ±0.03 

ArH/^T=2.99 0.03 

kD/kT= 1.39 

NaOD (0.48 M) 0.942 
in D2O 

NaOH (0.48 M) 
inH,0 

0.545 

0.330 ±0.004 kHlkT = 2.86 

0.392 ± 0.004 fcD/fcT=1.39 0.14 

a All rate constants expressed as second-order rate constants measured at 29.8 ± 0.1° and derived from least-squares treatment of the data. 
All correlation coefficients were 0.9998 or better. b Parentheses indicate the site of the tritium and the exchange process. 
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such exchanges is described in Scheme I. If the first step is the 
slow step, i.e., kn » /c_i there will be no internal return. As 
k-\ becomes more nearly equal to k\\, internal return becomes 
significant. A quantitative determination of internal return has 
recently been achieved by Streitwiesers' group10 for several 
base-catalyzed exchange reactions. By measuring kn/k-r in 
D2O and k^/kj in H2O it was possible to calculate k-\n/k\\ 
based on equations developed by Swain et al.11 For example 
this ratio, defined as <ZH, was found to have values of 0.6 and 
0.2 in the exchanges of triphenylmethane and toluene, re
spectively (using lithium cyclohexylamide in cyclohexylami-
ne10a). 

The consistency of their results in several other cases1013 

indicated their approach to be reliable. We therefore decided 
to apply this method to the base-catalyzed exchange of each 
methylene proton of benzyl methyl sulfoxide in water and, for' 
comparison, to the exchange of the biaryl sulfoxide, 2, in 
tert-b\ity\ alcohol-O-d. 

Previous knowledge makes it possible to label benzyl methyl 
sulfoxide in a highly stereoselective manner. Base-catalyzed 
H-D exchange produces the RS (SR)n diastereomeric a-
deuteriobenzyl methyl sulfoxide 16 times faster than the SS 
(RR) isomer.1 In contrast the SS isomer is formed in large 
excess (94:6) by quenching the a-lithio derivative in THF at 
—60° with D 2 0. 3 a The requisite samples were labeled as fol
lows: (Sample I) Replacement of the pro R in S or fast pro
ton13 by tritium was achieved by allowing the exchange of 
benzyl methyl sulfoxide in tritiated water14 to proceed to only 

3.3% of reaction; sample II, required for measurement of 
ko/kj for the "fast" proton, was produced by complete deu-
teration of the methylene group followed by back exchange in 
tritiated water to 3% of reaction. Sample III, containing tritium 
in place of the slow proton, was produced by quenching the 
lithiosulfoxide with tritiated water. Sample IV was deuterated 
and tritiated in the slow position by using D2O containing 0.3% 
of tritiated water as the quenching solution. 

AU samples used in the kinetic measurements were subjected 
to NMR, low voltage MS and tritium assays to determine as 
accurately as possible both their isotope content and the pro
portions of diastereomers.15 Rate constants were determined 
by monitoring gain or loss of deuterium using low voltage MS 
and loss of tritium by scintillation counting.17 Table I sum
marizes the results. 

Analysis of the data involving exchange of the fast proton 
by Streitwieser's equations103 leads to the result that 3% of the 
anion undergoes internal return. Data for the exchange of the 
slow proton lead to a value for aH of 0.14 (i.e., 12% internal 
return).18 It is clear that in the exchange of each methylene 
proton the amount of internal return is small and will have a 
negligible effect on the calculated relative stabilities of the two 
transition states leading to anion formation. Thus, information 
obtained from kinetics regarding the stability of an anion in
termediate is reliable in the case of benzyl methyl sulfoxide in 
aqueous media. 

In contrast, in the exchange of protons H1 and H 2 of the 
sulfoxide, 2, in. tert-butylalcohol-0-d, a large amount of in
ternal return occurs. Values for kn/kjof 1.21 and 1.41 were 
found for isotopic exchanges at Hi and H 2 using stereoselec
tivity tritiated samples of 2.19 Such low primary isotope effects 
cannot possibly reflect values for ^ H 1 M T 1 - For example, 
k^/kj1 in benzyl methyl sulfoxide can be calculated to be 3.2 
from an and the experimental value. The extremely small 
isotope effects observed for 2 can only logically be accounted 
for by the presence of large amounts of internal return. If one 
assumes a /CH' /^T 1 = 3.2 in this sulfoxide exchange then from 
(£H//c-r)obsd the percent internal return is calculated to be 80 
± 15 and 70 ± 15% for Hj and H2, respectively. It is of course 
consistent with the summary of Hunter,8 that internal return 
is much larger in the less polar tert-buty\ alcohol. 

In conclusion, two points merit emphasis. Firstly, internal 
return does occur in the exchange reaction of 2 in tert-butyl 
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alcohol-O-d to the extent that any resultant conclusions re
garding anion stabilities based on its assumed absence may be 
erroneous. Secondly, and as a corollary, unless evidence es
tablishing the absence of internal return is obtained, the der
ivation of anion stabilities from exchange rate data on any 
other sulfoxide is unwarranted. Fortunately, based on the re
cent studies of Cram and co-workers,21 one can test for internal 
return, at least qualitatively, by examining the effects of adding 
crown ether on the rates of proton exchange. Such a test should 
be routinely applied to isotopic exchange studies. 
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Intramolecular Hydrolysis of a Methyl Ester by 
Substrate Bound Metal Hydroxide 

Sir: 

The role of the metal ion in the mechanism of hydrolytic 
metalloenzymes continues to receive much attention. Interest 
in the role of metal bound hydroxides as nucleophiles has been 
stimulated by recent communications concerning the ability 
of these species to add to carbonyl compounds1 and to effect 
the hydrolysis of carboxylic acid anhydrides.2 An ideal model 
for a metallohydrate centered acyl transferase would be one 
that directed the attack of the metal bound hydroxyl group in 
either an intramolecular or an intracomplex reaction, involved 
the hydrolysis of an acyl function with a poor leaving group 
(aliphatic carboxylic acid ester or amide), and would allow the 
determination of all kinetic and thermodynamic constants. In 

V=VCO2CH3 

M(OH2) + 
HN .N 

+2H* 

COXH1, 
OH 

PZ1(ImH+)G.! 
ptf2(-OH)9.6 

MeOH 

HN > ' - ° 
(1) 

pKa (CO2H) 3.2 
ptfb (ImH+) 6.9 
ptfe (-OH) 9.8 
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